acceptability" for protecting public health with an adequate margin of safety. 16 Similarly, EPA's risk assessment supports the conclusion that residual risks of HAP emissions from the EGU source category are "acceptable" for other potential public health effects, including both chronic and acute non-cancer effects. 17

These conclusions have been confirmed by the detailed reevaluation of the 2020 risk assessment that the Agency is now completing as part of the current rule-making action. That EPA reevaluation clearly demonstrates that the 2020 risk assessment did not contain any significant methodological or factual errors that could call into question the results and conclusions reached in the 2020 risk assessment. Most notably, EPA used well-accepted approaches and methodologies for performing a residual risk analysis that adhere to the requirements of the statute and are consistent with prior residual risk assessments performed by EPA over the years for other industry sectors. 18

The results from both residual risk assessments can lead to only one rational conclusion: the current MATS limitations provide an ample margin of safety to protect public health in accordance with CAA section 112.

The DEQ filed comments addressing these points and asking EPA to provide a better health benefit justification than the rationale currently included in the Regulatory Impacts Analysis (RIA). 19 In particular, DEQ noted that EPA cannot rely on non-HAPs' co-benefits to justify the Proposed Rule, and EPA has not identified any HAP-related benefits that would be sufficient to justify the The agency also voiced skepticism over what it called EPA's suspect characterization of the health benefits that it identified, which is quoted below:

While the screening analysis that EPA completed suggests that exposures associated with mercury emitted from EGUs, including lignite-fired EGUs, are below levels of concern from a public health standpoint, further reductions in these emissions should further decrease fish burden and exposure through fish consumption including exposures to subsistence fishers.²⁰

DEQ's well-founded concern is that EPA's admission that current exposure associated with mercury is below levels of concern is directly inconsistent with, not support of, EPA's proposal for a lower standard.

DEQ commented that this theme, unfortunately, is consistent across the entire "Benefits Analysis" section of the RIA, citing another example of this inconsistency, which is quoted below:

"Regarding the potential benefits of the rule from projected HAP reductions, we note that these are discussed only qualitatively and not quantitatively

¹⁶ 88 Fed. Reg. at 24,865.

¹⁷ *Id.* at 24,865-66.

¹⁸ 88 Fed. Reg. at 24,865.

¹⁹ Regulatory Impact Analysis for the Proposed National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Review of the Residual Risk and Technology Review (Apr. 2023), Docket ID: EPA-HQ-OAR-2018-0794-5837.

²⁰ *Id.* At p. 0-8.

....Overall, the uncertainty associated with modeling potential of benefits of mercury reduction for fish consumers would be sufficiently large as to compromise the utility of those benefit estimates-though importantly such uncertainty does not decrease our confidence that reductions in emissions should result in reduced exposures of HAP to the general population, including methylmercury exposures to subsistence fishers located near these facilities. Further, estimated risks from exposure to non-mercury metal HAP were not expected to exceed acceptable levels, although we note that these emissions reductions should result in decreased exposure to HAP for individuals living near these facilities."²¹

Comments filed by the Lignite Energy Council (LEC) further emphasize the point. LEC stated that according to the risk review EPA conducted in 2020, which EPA has proposed to reaffirm, the risks from current emissions of hazardous air pollutants (HAP) emitted by coal-fired power plants are several orders of magnitude below what EPA deems sufficient to satisfy the Clean Air Act. LEC points out that EPA has for decades found risks to be acceptable with an ample margin of safety if maximum individual excess cancer risks presented by any single facility is less than "100-in-1 million." In comparison, EPA's analysis of the coal- and oil-fired electric utility source category recognizes the risk it presents is now at one tenth of that acceptable level, with a maximum risk from any individual facility of "9-in-1 million."

However, even that value vastly overstates the risk associated with coal-fired power plants. The "9-in-1 million" risk level identified by EPA is only associated with a single, uncontrolled, residual oil-fired facility located in Puerto Rico. ²³ What EPA's discussion of risk fails to recognize, but its analysis clearly shows, is that the highest level of risk presented by any coal-fired power plant is actually "0.3-in-1 million," more than 300 times lower than the threshold EPA deems acceptable. ²⁴

The level of risk presented by North Dakota lignite-powered plants is lower still. According to EPA's risk review, the maximum risks presented by any North Dakota lignite-fired power plant is "0.08-in-1 million," yet another order of magnitude lower than the highest risk from any coal-fired plant, and more than three orders of magnitude lower than EPA's "acceptable" level of risk with an "ample margin of safety."

²² Jason Bohrer, "Comments on National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Review of the Residual Risk and Technology Review, 88 Fed. Reg. 24854 (Apr. 24, 2023), June 23, 2024.

(Page 421 of Total) 204a

²¹ *Id.* at pp. 4-1 - 4-2.

²³ Residual Risk Assessment for the Coal- and Oil-Fired EGU Source Category in Support of the 2020 Risk and Technology Review Final Rule, Docket ID No. EPA-HQ-OAR-2018-0794-4553, App. 10, Tbls. 1 & 2a (Sept. 2019) ("Risk Assessment") (note that Table 2a is printed upside down in the final September 2019 version of the Residual Risk Assessment posted at www.regulations.gov, which may interfere with search commands; a searchable version of the same table is available in the December 2018 draft version, Docket ID No.). See also 84 Fed. Reg. at 2699 ("There are only 4 facilities in the source category with cancer risk at or above 1-in-1 million, and all of them are located in Puerto Rico.").

²⁴ Jason Bohrer, "Comments on National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Review of the Residual Risk and Technology Review, 88 Fed. Reg. 24854 (Apr. 24, 2023), June 23, 2024.

205a

Filed: 06/07/2024

The risks from North Dakota lignite are so low that they are more easily expressed, not in a million, but in a *billion*—EPA has determined that the excess cancer risks from all North Dakota lignite plants fall between 5- and 80-in-1 billion.²⁵ Moreover, EPA's analysis indicates that those maximum risks are not associated with mercury.²⁶

In fact, EPA's own analysis confirms the risks from North Dakota lignite-powered plants are so low they are little more than a rounding error that does not even qualify as a significant digit. In its analysis of the still low but relatively higher risk from the Puerto Rican oil-fired plants, EPA determined that one of those facilities presented a risk no greater than "1-in-1 million," even though EPA's modeling actually returned a risk level of "1.09-in-1 million."6 EPA discarded the extra ".09," apparently finding it too small to matter. However, that extra ".09" risk equates to "90-in-1 billion," and it is therefore higher than the *entire* risk identified for any North Dakota lignite plant.

The Administrative Record Indicates the Mercury Standard of 1.2 lb./TBtu is Technically Unachievable for EGUs using North Dakota Lignite Coal

The Administrative Record for the proposed rule suggests EPA made numerous critical mistakes in assuming lignite fired EGUs can achieve a 1.2 Hg/lb limit with 90% Hg removal. As detailed in the Cichanowicz Report, Section 6, EPA assumed the characteristics of lignite and subbituminous coals are similar such that the Hg removal by emission controls capabilities is similar. In this light, EPA did not consider that the high presence of sulfur trioxide (SO3) in lignite coal combustion flue gas that significantly limits the Hg emissions reduction potential of emissions controls.²⁷

Similarly, as noted by LEC, EPA's proposal references data obtained via an information collection request as indicative of the level of performance achievable at North Dakota lignite facilities, but that data only reflects relatively short-term testing that does not fully capture the significant variability of lignite coals. Also, unlike other types of facilities that may be able to blend coals to achieve greater consistency in the character of their fuel, all North Dakota lignite units are located at mine-mouth facilities without access to other coal types, and therefore depend entirely on the fuel extracted from the neighboring mine. As a result, changes in constituents between seams of lignite coal can result in a high level of variability in the emission rates that result from use of the coal as it is mined over time. ²⁸

While LEC agreed with EPA that the injection of activated carbon is the most effective means of reducing mercury emissions from lignite-powered units, LEC also criticized EPA for ignoring the well-known diminishing returns of injecting more carbon. With each marginal increase in carbon

²⁵ Risk Assessment, Tbl. 2a (indicating cancer risks of 8.07e-08, 3.09e-08, 1.31e-08, 1.21e-08, and 5.12e-09 for Facility NEI IDs 380578086511, 380578086311, 380558011011, 380578086511, 380578086611 (Milton R. Young, Leland Olds, Coal Creek, Antelope Valley, and Coyote).

²⁶ *Id.*, at Tbl. 2a (indicating the target organ of the risk associated with the plants identified in note 5 is "respiratory"). ²⁷ J. Cichanowicz et al., *Technical Comments on National Emission Standards for Hazardous Air Pollutants: Coaland Oil-fired Electric Utility Steam Generating Units Review of Residual Risk and Technology*, at 29, Figure 6-7 (June 2, 2023) ("Cichanowicz Report").

²⁸ Jason Bohrer, "Comments on National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Review of the Residual Risk and Technology Review, 88 Fed. Reg. 24854 (Apr. 24, 2023), June 23, 2024.

injection, the incremental increase in emission reduction capability falls. Thus, injecting more and more carbon will not necessarily result in greater emission reductions beyond a certain injection level. LEC asked EPA to evaluate the effect of diminishing returns on its conclusion that North Dakota lignite-powered facilities can achieve the standard designed for all other units of 1.2 lb/TBtu.

EPA does not appear to have taken the above concerns into account in claiming lignite-powered facilities can achieve the performance levels achieved at subbituminous plants. As a result, EPA has significantly underestimated the level of control needed to achieve the proposed standard of 1.2 lb/TBtu. Contrary to the analysis EPA relies upon to justify lowering the standard for lignite plants, control efficiencies of greater than 90 percent would be needed for North Dakota lignitepowered facilities.²⁹ LEC's comments asked EPA to reconsider its proposal in light of these concerns, and in light of EPA's legal obligation to ensure all standards are "achievable," which means they "must be capable of being met under most adverse conditions which can reasonably be expected to recur."30

The Administrative Record indicates a key reason why EPA's proposed standards are unachievable is the chemical composition of North Dakota lignite. For example, lignite has different heat and moisture content than subbituminous coals. As a result, a greater volume of fuel and air is needed at lignite plants to produce the same heat input compared to subbituminous plants. Due to higher fuel and air flows, a much greater volume of sorbent is needed to achieve similar emission reductions, and the additional sorbent dramatically increases cost, and therefore reduces the cost-effectiveness, of the controls.³¹

Another distinguishing difference EPA appeared to overlook in its proposal is the higher sulfur concentration in North Dakota lignite relative to subbituminous Powder River Basin coal, which in turn produces a higher level of sulfur trioxide ("SO3"). In the past, EPA has worked with a consultant that recognized this reality as follow:

With flue gas SO3 concentrations greater than 5-7 ppmv, the sorbent feed rate may be increased significantly to meet a high Hg removal and 90% or greater mercury removal may not be feasible in some cases. Based on commercial testing, capacity of activated carbon can be cut by as much as one half with an SO3 increase from just 5 ppmv to 10 ppmv. 32

Cichanowicz et al. highlighted this passage from the S&L technology assessment and also noted that the presence of SO3 often affects capture rates in another way—by requiring units with measurable SO3 to be designed with higher gas temperature at the air heater exit to avoid corrosion that would otherwise occur if the SO3 is allowed to cool and condense on equipment

³⁰ White Stallion Energy Center, LLC v. EPA, 748 F.3d 1222, 1251 (2014) (citing Nat'l Lime Ass'n v. EPA, 627 F.2d 416, 431 n. 46 (D.C. Cir.1980)).

21

(Page 423 of Total)

²⁹ Cichanowicz Report, at 25, Table 6-1.

³¹ Jason Bohrer, "Comments on National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Review of the Residual Risk and Technology Review, 88 Fed. Reg. 24854 (Apr. 24, 2023), June 23, 2024.

³² Sargent & Lundy, IPM Model – Updates to Cost and Performance for APC Technologies: Mercury Control Cost Development Methodology, Project 12847-002, at 3 (Mar. 2013).

components. However, that higher exit gas temperature also impacts the effectiveness of sorbent injection systems—special-purpose tests on a fabric filter pilot plant showed an increase in gas temperature from 310°F to 340°F lowered sorbent Hg removal from 81% to 68%. ³³ The higher levels of SO3 formed by the higher sulfur content found in lignite fuels will inhibit the ability of injected sorbents to reduce mercury emissions at lignite plants to a far greater extent than at subbituminous plants.

LEC agreed with these concerns in its comments and raised another important consideration — the fact that, unlike subbituminous plants, selective catalytic reduction (SCR) is technically infeasible on North Dakota lignite, due to its chemical composition. Although SCR systems are primarily installed for the control of nitrogen oxides (NO_X), SCR can enhance the oxidation of elemental mercury ("Hg⁰") which facilitates removal in downstream control equipment, such as wet flue gas desulfurization (FGD) systems.³⁴ The higher level of mercury control achievable with an SCR is almost certainly why the one lignite plant (Oak Grove) evaluated by EPA as part of its review of the MATS RTR appears capable of achieving the mercury limit set for other coal ranks—it has an SCR that cannot be installed on North Dakota lignite facilities.³⁵

LEC's comments also highlighted the experience of two LEC members that recently evaluated the difference in mercury control achieved by plants using subbituminous coal equipped with an SCR and plants using lignite coal without an SCR. Based on those evaluations, North Dakota lignite-powered facilities were found to have much greater difficulty reducing mercury emissions, despite using more than three times the amount of halogenated activated carbon than the subbituminous plant.

In the past, EPA has questioned whether SCR is technically feasible for North Dakota lignite-powered facilities, and recent research has confirmed that the significant challenges associated with using SCR on North Dakota lignite remain unresolved.³⁶ Although SCR has been demonstrated on the types of lignite found in other parts of the country, North Dakota lignite differs substantially in chemical makeup because it contains a much higher concentration of alkali metals (*e.g.*, sodium and potassium) that render the catalyst ineffective.³⁷

In particular, the relatively high concentration of sodium in North Dakota lignite forms vapor, condenses, and then coats other particles, or it forms its own particles at a size range of 0.02-0.05 μ m. As a vapor or as a very small particle, the sodium will pass through any upstream emissions control equipment (*e.g.*, electrostatic precipitators and scrubbers), and thus will reach the SCR regardless of whether the SCR is located before other emission control devices (high-dust configuration) or after those other controls (low-dust or tail-end configurations). ³⁸

_

³³ Sjostrom 2016.

³⁴ 88 Fed. Reg. at 24875.

³⁵Jason Bohrer, "Comments on National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Review of the Residual Risk and Technology Review, 88 Fed. Reg. 24854 (Apr. 24, 2023), June 23, 2024.

³⁶ See Draft SIP, App. D, at D.2.c-5 (citing Benson, Schulte, Patwardhan, Jones (2021) "The Formation and Fate of Aerosols in Combustion Systems for SCR NO_X Control Strategies" A&WMA's 114th Annual Conference, #983723). ³⁷ *Id.*

³⁸ *Id*.

Once the sodium particles reach the SCR, they plug the pores of the catalyst, which are the key feature that allows for improved oxidation of other pollutants. The sodium also poisons the catalyst both inside the pores and on the surface, rendering the active component of the catalyst inactive. Recent efforts to address these concerns through either cleaning or regeneration of the catalyst have not been successful, even at pilot scale. A study recently cited by DEQ in its regional haze plan provides additional details on these efforts and the unsolved technical challenges that remain regarding the impact of alkali metals in North Dakota lignite on the technical feasibility of SCR. ³⁹

According to LEC, its members report that efforts to identify a willing vendor for an SCR on a North Dakota lignite unit have been unsuccessful—all vendors have declined to offer SCR for use on North Dakota lignite once they have closely reviewed the unique characteristics that make SCR infeasible on that particular fuel.⁴⁰

In short, the Administrative Record and other available evidence indicates that North Dakota lignite-powered facilities will likely not be able to meet the revised emission standards EPA is proposing for the MATS Rule.

The Administrative Record Indicates the Lower PM Standard May Also Not Be Technically Feasible

In addition to imposing a more stringent mercury standard on lignite by essentially eliminating the subcategory, EPA's proposal also lowers the standard on fPM for all existing units to the level previously deemed achievable only by new units. However, like its proposed Hg standard for lignite, EPA's proposal to revise the PM standard for all coal types remains unjustified by any demonstration of potential human health or environmental benefits.

The LEC's comments detail particular concerns associated with EPA's failure to provide a reasonable justification for so dramatically reducing the PM limit. As LEC noted, the risks that the MATS Rule is designed to address have already been eliminated, down to several orders of magnitude below the level at which Congress directed EPA to stop regulating. The highest residual risk for the entire source category, which is based on an oil-fired unit, is just one tenth of EPA's acceptable level of risk, and the highest risk from any coal plant is more than an order of magnitude below the risk presented by oil-fired units.

Furthermore, the Administrative Record suggests that EPA's analysis of the achievability of the new 0.01 lb/mmBtu standard is based on an arbitrary data set, and that analysis also suffers from a lack of transparency. Specifically, commenters observed that EPA relies on a Sargent & Lundy memorandum that lacks sufficient detail or supporting documentation to verify the assumptions made, essentially hiding much of the agency's thought process behind the claim that the

⁴¹ *Id*.

 $^{^{39}}$ *Id*.

⁴⁰ Jason Bohrer, "Comments on National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Review of the Residual Risk and Technology Review, 88 Fed. Reg. 24854 (Apr. 24, 2023), June 23, 2024.

information on which it is based is not available in public forums.⁴² In doing so, EPA seemingly commits what it has previously cited as error in plans developed by states and industry—failing to provide sufficient information to understand the reasoning underlying key conclusions.⁴³

Moreover, the Administrative Record indicates the combined effect of both the proposal to require universal use of CEMS and the lower standard of 0.01 lb/mmBtu will present a compounded challenge if finalized as proposed. Commenters indicated that the difficulty in demonstrating achievement of the new standard will be exacerbated by the requirement to use the less accurate CEMS, and the difficulty in using CEMS will be exacerbated by the dramatically lower standard. In particular, serious concerns remain with respect to whether a fPM CEMS can effectively estimate emission rates at such low levels, or whether emissions that low will be too small for a CEMS to differentiate compliance from a false reading. EPA attempts to allay these fears by claiming existing units can simply follow in the footsteps of new units, since new units have been subject to a CEMS requirement with a fPM emission limit of 0.090 lb/megawatt-hour since the inception of MATS. But that assurance provides no comfort—there are no new units. 47

In light of these shortcomings, the NDTA contracted with Center of the American Experiment to model the impacts of the MATS rules on resource adequacy, reliability, and cost of electricity to consumers. The findings of this analysis are detailed in Section D.

Section C: Impact of MATS Regulations- Power Plant Economics and Grid Reliability

Power Plant Economic Impacts

The economic impacts for a lignite power plant from the Mercury and Air Toxics Standards (MATS) finalized rule can be substantial. The updated MATS rule, if implemented by the

⁴² *PM Incremental Improvement Memo*, Doc. ID EPA-HQ-OAR-2018-0794-5836 (March 2023) ("Improvements to existing particulate control devices will be dependent on a range of factors including the design and current operation of the units, which is not documented in public forums. ... Unfortunately, the details of how those units' ESP designs, upgrades, and operation are not publicly available In order to evaluate the applicability of one or more of these potential improvements, information would need to be known about the existing ESPs and their respective operation which is not documented in public forums.").

⁴³ See, e.g., Approval and Promulgation of Implementation Plans; Louisiana; Regional Haze State Implementation Plan, 82 Fed. Reg. 32,294, 32,298 (July 13, 2017) ("Entergy's DSI and scrubber cost calculations were based on a propriety [sic] database, so we were unable to verify any of the company's costs. ... Because of these issues, we developed our own control cost analyses").

⁴⁴ Jason Bohrer, "Comments on *National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Review of the Residual Risk and Technology Review*, 88 Fed. Reg. 24854 (Apr. 24, 2023), June 23, 2024.

⁴⁵ *Id.*

 $^{^{46}}$ 88 Fed. Reg. at 24874. The electrical output-based limit for new EGUs translates to approximately 0.009 lb/mmBtu, which is slightly below EPA's proposed limit of 0.010 lb/mmBtu.

⁴⁷ Jason Bohrer, "Comments on National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Review of the Residual Risk and Technology Review, 88 Fed. Reg. 24854 (Apr. 24, 2023), June 23, 2024.

Environmental Protection Agency (EPA), aims to reduce mercury and other hazardous air pollutant emissions from coal-fired power plants. Coal-firing power plants, and lignite-firing power plants in particular, may face specific challenges and economic consequences in complying with these regulations, which could result in their forced retirement. Some potential economic impacts include:

- 1. Escalating Operational Expenditures: Under this rule, lignite power plants will face an excessive economic burden from a significant uptick in operational costs due to the integration of pollution control equipment. The installation of advanced technologies like activated carbon injection (ACI) and flue gas desulfurization (FGD) systems necessitates continuous monitoring and maintenance to ensure optimal performance. Design specifications vary from plant to plant which increases the complexities of the operating systems that require regular cleaning, replacement of consumables, and calibration, all of which incur additional expenses. Moreover, the implementation of pollution control, measures may necessitate alterations in combustion processes or the introduction of supplementary fuel, further driving up operational costs. As a result, lignite power plants are burdened with substantial ongoing expenditures, while also lacking a positive cost benefit analysis, which will undermine their economic viability and competitiveness in the energy market.
- 2. **Dilemma of Plant Retrofitting or Retirement:** Lignite power plants are confronted with the challenging prospect of either retrofitting existing facilities or contemplating retirement in response to the stringent requirements of the Mercury and Air Toxics Standards (MATS). Plant retrofitting involves substantial investment in upgrading equipment and implementing advanced pollution control technologies to achieve compliance with regulatory mandates. However, these retrofitting endeavors entail significant additional costs, potentially straining the financial resources of plant owners and operators. Moreover, the uncertainty surrounding the long-term economic viability of retrofitted plants further complicates decision-making processes.
- 3. Impact on Electricity Prices: The implementation of pollution control technologies to comply with MATS regulations can impose significant financial burdens on lignite power plants. These costs, encompassing the installation, maintenance, and operation of such technologies, would ultimately be transferred to consumers in the form of higher electricity prices. As power plants seek to recoup the expenses incurred in meeting regulatory requirements, consumers will experience an uptick in their electricity bills. This escalation in electricity prices will have far-reaching implications for households, businesses, and industries reliant on affordable energy. It will affect household budgets, impact the competitiveness of businesses, and influence consumer spending patterns. Additionally, higher electricity prices will introduce challenges for industries sensitive to energy costs, potentially leading to shifts in production, investment, and employment patterns within the broader economy. Therefore, the economic impact of elevated electricity prices resulting

from MATS compliance should be carefully considered within the context of the energy market, taking into account the implications for consumers, businesses, and overall economic growth.

Filed: 06/07/2024

- 4. Employment Effects: The escalation in costs and the possibility of plant retrofitting or retirement can reverberate through the lignite industry and associated sectors, potentially leading to job losses. As lignite power plants grapple with increased operational expenses and the financial strain of compliance with regulatory requirements, they may be compelled to streamline operations or even cease production altogether. Such decisions can have a ripple effect on employment within the community, impacting not only plant workers but also individuals employed in ancillary industries such as mining, transportation, and manufacturing. Job losses in these sectors can contribute to economic challenges, including reduced consumer spending, increased unemployment rates, and a decline in overall economic activity. Furthermore, the social and psychological impacts of job loss on affected individuals and communities cannot be understated, as they may face financial insecurity, stress, and uncertainty about their future prospects. Therefore, the potential job impacts stemming from increased costs and plant adjustments underscore the broader economic implications of regulatory compliance measures in the lignite industry.
- 5. Regional Economic Consequences: Lignite power plants are often linchpins of regional economies, exerting substantial influence on employment, tax revenue, and economic activity. Any shifts in the economic viability of these plants, whether due to increased costs, regulatory compliance burdens, or operational adjustments, will trigger broader consequences for local economies. The potential closure or downsizing of lignite power plants can result in the loss of direct and indirect employment opportunities, affecting not only plant workers but also individuals and businesses reliant on plant-related activities. Moreover, the decline in plant operations will lead to reduced tax revenue for local governments, impacting their ability to fund essential services and infrastructure projects. Additionally, the loss of economic activity associated with lignite power plants will ripple through the supply chain, affecting suppliers, vendors, and service providers in the region. This domino effect will exacerbate economic challenges, including decreased consumer spending, increased business closures, and a general downturn in economic vitality. Therefore, changes in the economic landscape of the lignite industry will have far-reaching consequences for regional economies, underscoring the interconnectedness between energy production, employment, and overall economic well-being at the local level.
- 6. **Impact on Investment Decisions:** The economic ramifications of the MATS rule can significantly shape investment decisions within the lignite industry. Plant owners and prospective investors must carefully evaluate the long-term economic feasibility and potential returns on investment in light of stringent regulatory compliance mandates. The substantial costs associated with MATS compliance, including technology upgrades and operational adjustments, may deter investment in lignite power plants or prompt

divestment from existing assets. Investors may reassess the risk-return profile of ligniterelated ventures, considering factors such as regulatory uncertainty, market volatility, and shifting energy trends. Moreover, the potential for increased operational costs and regulatory burdens may incentivize investment in alternative energy sources or cleaner technologies, which align more closely with evolving environmental and sustainability objectives. Therefore, the economic implications of the MATS rule play a pivotal role in shaping investment decisions within the lignite industry, influencing capital allocation, project planning, and strategic resource allocation strategies.

7. Legal and Regulatory Costs: Meeting MATS requirements often entails significant legal and regulatory costs associated with monitoring, reporting, and ensuring continued compliance. Lignite power plants must allocate resources to navigate complex regulatory frameworks, engage legal counsel, and implement robust monitoring and reporting systems to adhere to emissions standards. These additional expenses contribute to the overall economic strain on lignite power plants, exacerbating the financial challenges associated with regulatory compliance. As a result, the burden of legal and regulatory costs further underscores the financial pressures faced by lignite power plant operators, shaping their strategic decision-making and resource allocation efforts.

Grid Reliability Impacts

Compliance with the Mercury and Air Toxics Standards (MATS) rule will likely have grid reliability impacts on regional power grids that rely on lignite- or other coal-firing power plants. The impacts on grid reliability for power grids that rely on lignite- or other coal-firing power plants can include:

1. Operational Adaptations and Flexibility Constraints: The implementation of pollution control technologies like activated carbon injection (ACI) and flue gas desulfurization (FGD) systems necessitates operational modifications within lignite power plants. These adjustments may include alterations to combustion processes, fuel handling procedures, and overall plant operations to accommodate the integration of new equipment and systems. However, such operational changes can compromise the inherent flexibility of lignite power plants to respond effectively to fluctuating load conditions and grid demands. The need for continuous operation of pollution control systems, coupled with potential limitations in responsiveness, may impede the plant's ability to ramp up or down quickly in response to changes in electricity demand or supply. Consequently, the reliability of lignite power plants to maintain grid stability and meet grid operator requirements may be compromised, raising concerns about their ability to ensure consistent and secure electricity supply. Thus, while MATS compliance aims to mitigate environmental impacts, the operational adaptations required may introduce challenges to the reliability and flexibility of lignite power plants in supporting a resilient and dynamic energy grid.

- 2. Disruptions Due to Equipment Installation: The installation and retrofitting of pollution control equipment often necessitate temporary shutdowns or reduced operating capacities within lignite power plants. These planned downtime periods are essential for integrating new equipment, conducting modifications, and ensuring compliance with regulatory requirements. However, the interruptions in plant operations during these installation phases will have adverse effects on the overall reliability and availability of the plant. The temporary cessation of power generation activities will disrupt electricity supply, potentially affecting grid stability and reliability. Moreover, extended downtime periods may lead to revenue losses for plant operators and suppliers, as well as inconvenience for consumers and end-users reliant on consistent electricity provision. Therefore, while essential for achieving compliance with MATS regulations, the equipment installation process poses challenges to the reliability and continuity of lignite power plant operations, emphasizing the importance of efficient planning and management to minimize disruptions.
- 3. Efficiency Implications: The introduction of pollution control technologies, especially those targeting mercury emissions reduction, will potentially undermine the overall efficiency of lignite power plants. While these technologies play a crucial role in meeting regulatory standards, they often require additional energy inputs and introduce operational complexities that can compromise plant efficiency. For instance, activated carbon injection (ACI) systems necessitate the injection of powdered carbon into the flue gas stream, which can increase resistance and pressure drops within the system, thus reducing overall efficiency. Similarly, flue gas desulfurization (FGD) systems require energy-intensive processes such as limestone slurry preparation and circulation, further impacting plant efficiency. The reduction in efficiency can translate to decreased electricity output per unit of fuel input, potentially affecting the plant's ability to generate electricity reliably and meet demand fluctuations. Consequently, while pollution control measures are essential for environmental protection, the associated efficiency implications underscore the need for careful optimization and balancing of environmental and operational considerations to ensure reliable power generation from lignite plants.
- 4. **Elevated Maintenance Demands**: The incorporation of MATS-compliant equipment, including ACI and FGD systems, often translates to heightened maintenance requirements within lignite power plants. The intricate nature of these pollution control technologies necessitates more frequent inspections, cleaning, and servicing to ensure optimal performance and regulatory compliance. However, the increased maintenance needs can result in extended periods of downtime, during which the plant may be unable to generate electricity, impacting its reliability and availability. Moreover, the allocation of resources and manpower to address maintenance tasks diverts attention and resources away from other operational activities, potentially affecting overall plant efficiency and productivity. Therefore, while essential for environmental compliance, the elevated maintenance

(Page 430 of Total) 213a

- demands associated with MATS-compliant equipment pose challenges to the reliability and operational continuity of lignite power plants, highlighting the importance of proactive maintenance planning and execution to minimize disruptions.
- 5. Inherent Fuel Supply Hurdles: Lignite power plants grapple with inherent challenges associated with the utilization of lignite coal, particularly in meeting stringent emission standards. Lignite, characterized by its lower rank and elevated moisture content, poses unique obstacles in combustion processes. The variability in chemical composition across different seams of coal extracted from mines further complicates the task of ensuring consistent and efficient combustion. Each seam presents distinct combustion characteristics, necessitating meticulous adjustments in operational parameters to maintain compliance with emission regulations. Consequently, lignite power plants encounter difficulties in securing a reliable and uniform fuel supply, which undermines their ability to consistently meet emission targets and operational efficiency goals. The intricacies of managing diverse coal qualities exacerbate the complexities of pollution control measures, posing significant operational challenges for lignite power plants.
- 6. **Integration Challenges**: The introduction of new pollution control technologies into operational lignite power plants may encounter compatibility hurdles. Ensuring seamless integration with existing infrastructure is paramount for preserving reliability. Compatibility issues can emerge from differences in technology specifications, operational parameters, or control systems between the new equipment and the plant's established infrastructure. Unaddressed disparities may lead to operational inefficiencies, malfunctions, or system failures. Thus, meticulous planning and coordination are vital to mitigate compatibility risks and uphold the reliability of lignite power plants. Failure to address these challenges will compromise plant performance, emphasizing the need for thorough assessment and integration procedures when adopting new technologies.
- 7. **System Coordination and Grid Stability:** Adjustments in operating conditions and responses to fluctuating load demands can disrupt system coordination and compromise grid stability. Lignite power plants must coordinate closely with grid operators to maintain reliable electricity supply while adhering to MATS requirements. Changes in plant operations, such as implementing pollution control technologies or adjusting output levels, can affect the overall balance of supply and demand within the grid. Without effective coordination, these changes may lead to imbalances, voltage fluctuations, or frequency deviations, posing risks to grid stability. Therefore, robust communication and collaboration between lignite power plants and grid operators are essential to ensure seamless integration of plant operations with broader grid dynamics. By coordinating effectively, lignite power plants can contribute to grid stability while meeting regulatory obligations, ensuring the reliable delivery of electricity to consumers.

(Page 431 of Total) 214a

- 8. Continuous Compliance Management: Adhering to emission limits mandated by MATS necessitates ongoing monitoring and fine-tuning of pollution control equipment. The chemical properties of lignite can vary even within coal seams from the same mine, posing challenges in preparation and adjustment for plant operations. This variability complicates efforts to maintain consistent compliance, requiring dynamic adjustments in day-to-day plant operations. Consequently, ensuring reliable compliance becomes a dynamic process, demanding meticulous attention to detail and proactive management of pollution control systems. Consistent monitoring and adjustment are essential to mitigate emissions effectively while sustaining the operational reliability of lignite power plants amidst the inherent variability of lignite coal properties.
- 9. **Supply Chain Vulnerabilities:** The consolidation in the power plant equipment sector over the past decade has reduced the number of suppliers available. Relying on specific suppliers for pollution control equipment and technologies introduces supply chain risks. Disruptions in the supply chain, such as shortages, delays, or quality issues, will impede the timely installation and operation of essential equipment, jeopardizing reliability. Lignite power plants must carefully assess and manage these supply chain vulnerabilities to ensure uninterrupted access to critical components and technologies necessary for regulatory compliance and operational integrity. Proactive measures, such as diversifying suppliers or implementing contingency plans, are crucial for mitigating supply chain risks and maintaining the reliability of lignite power plants.
- 10. Long-Term Viability and Aging Infrastructure: Compliance with MATS regulations will raise concerns about the long-term viability of older lignite power plants. Aging infrastructure may struggle to adapt to the requirements of new pollution control technologies, posing challenges that will impact reliability. The integration of these technologies into outdated systems may require extensive retrofitting or upgrades, which can strain resources and prolong downtime. Moreover, the operational lifespan of aging infrastructure may be limited, leading to questions about the economic feasibility of investing in costly compliance measures. Plant owners must carefully assess the cost-benefit ratio of compliance efforts and consider the potential impact on reliability when evaluating the long-term viability of older lignite power plants. Failure to address these challenges will compromise the reliability and competitiveness of these facilities in the evolving energy landscape.

Section D: Modeling Results

Summary

The EPA did not conduct a reliability analysis for its proposed MATS rules or its Post IRA base case, instead it conducted a Resource Adequacy and reserve margin analysis, which EPA has claimed is necessary but not sufficient to grid reliability.⁴⁸

EPA's lack of reliability modeling prompted several entities to voice concerns in the original docket for the Proposed MATS rule would negatively impact grid reliability, including the National Rural Electric Coop Association, the American Coal Council, The Lignite Energy Council, PGen, the American Public Power Association, and the National Mining Association. 49,50,51,52,53,54

To provide this necessary perspective, Center of the American Experiment modeled the reliability and cost impacts of the proposed Mercury and Air Toxics Standards (MATS) in the subregions consisting of the Midcontinent Independent Systems Operator (MISO) as it relates to the elimination of the subcategory for lignite-fired power plants. ⁵⁵,

Our analysis determined that the closure of lignite-fired powered power plants in the MISO footprint would increase the severity of projected future capacity shortfalls, i.e. rolling blackouts, in the MISO system if these resources are replaced with wind, solar, battery storage, and natural gas plants consistent with the EPA's estimates for capacity values for intermittent and thermal resources.

Building these replacement resources would come at a great cost to MISO ratepayers. The existing lignite facilities are largely depreciated assets that generate large quantities of dispatchable, low-cost electricity. Our modeling determined the total cost of replacement generation capacity in the Status Quo, Partial, and Full scenarios will cost \$12.93 billion, \$14.88 billion, and \$16.76 billion, respectively, from 2024 through 2035, resulting in incremental costs of \$1.9 billion in the Partial

31

(Page 433 of Total) 216a

⁴⁸ Resource Adequacy Analysis Technical Support Document, New Source Performance Standards for Greenhouse Gas Emissions from New, Modified, and Reconstructed Fossil Fuel-Fired Electric Generating Units; Emission Guidelines for Greenhouse Gas Emissions from Existing Fossil Fuel-Fired Electric Generating Units; and Repeal of the Affordable Clean Energy Rule Proposal Docket ID No. EPA-HQ-OAR-2023-0072 U.S. Environmental Protection Agency Office of Air and Radiation April 2023.

⁴⁹ NRECA Comments, EPA-HQ-OAR-2018-0794-5956, at 5-6.

⁵⁰ American Coal Council Comments, EPA-HQ-OAR-2018-0794-6808, at 3.

⁵¹ LEC Comments, EPA-HQ-OAR-2018-0794-5957, at 17.

⁵² PGen Comments, EPA-HQ-OAR-2018-0794-5994, at 5.

⁵³ APPA Comments, EPA-HQ-OAR-2018-0794-5958, at 33.

⁵⁴ NMA Comments, EPA-HQ-OAR-2018-0794-5986, at 29.

⁵⁵ U.S. Environmental Protection Agency, "National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Review of the Residual Risk and Technology Review," 88 FR 24854, April 24, 2023, https://www.federalregister.gov/documents/2023/04/24/2023-07383/national-emission-standards-for-hazardous-air-pollutants-coal--and-oil-fired-electric-utility-steam.